### Direct Catalytic Asymmetric Addition of Allylic Cyanides to Ketoimines

Ryo Yazaki, Tatsuya Nitabaru, Naoya Kumagai, Masakatsu Shibasaki

$$\begin{array}{c} O \\ P - Ph \\ N - Ph \\ Ph \\ R^{1} - R^{2} \\ aromatic \\ and \\ aliphatic \end{array} + \begin{array}{c} CN \\ CN \\ E - Ph \\ CN \\ CN \\ CN \\ CN \\ CH_{2}Cl_{2}/THF, -20 °C \\ yield up to 95\% \\ E/Z = up to <2/98 \\ up to 94\% ee \end{array}$$

# Asymmetric catalysis for the construction of quaternary carbon centers: nucleophilic addition on ketones vs. ketimines



- lower reactivity compared to ketones
- rapid isomerization to an enamine under basic conditions
- difficulty in differentiating the two substituents

J. Am. Chem. Soc. 2007, 129, 500.

#### **Catalytic Enantioselective Mannich-type Reactions of Ketoimines**

$$\begin{array}{c} O \\ P \\ Ar_{2} \\ Me \end{array} + \begin{array}{c} Cu(I) \ (10 \ mol \ \%) \\ \textbf{6} \ (10 \ mol \ \%) \\ additive \\ \hline THF, \ 40 \ ^{\circ}\text{C}, \ 20 \ h \\ \textbf{2d} : \ Ar = Ph \\ \textbf{2d} : \ Ar = 3,5-xylyl \\ \hline \\ (R)-DTBM-SEGPHOS \ (\textbf{6}) = \\ \\ \end{array} \\ \begin{array}{c} Cu(I) \ (10 \ mol \ \%) \\ \textbf{6} \ (10 \ mol \ \%) \\ additive \\ \hline THF, \ 40 \ ^{\circ}\text{C}, \ 20 \ h \\ \hline \\ P \\ \hline \\ \text{6} \\ \text{10} \\ \text{10}$$

|       |           | Cu      |                        | yield <sup>b</sup> | $ee^c$ |
|-------|-----------|---------|------------------------|--------------------|--------|
| entry | ketoimine | source  | additive <sup>a</sup>  | (%)                | (%)    |
| 1     | 1d        | $CuF^d$ | $(EtO)_3SiF + PhBF_3K$ | 60                 | 60     |
| 2     | 1d        | CuOAc   | $(EtO)_3SiF + PhBF_3K$ | 58                 | 85     |
| 3     | 1d        | CuOAc   | (EtO) <sub>3</sub> SiF | 54                 | 94     |
| 4     | 1d        | CuOAc   | $(MeO)_2SiF_2$         | 85                 | 93     |
| 5     | 1d        | CuOAc   | $Me_2Si(OAc)_2$        | 68                 | 78     |
| 6     | 1d        | CuOAc   | EtSi(OAc) <sub>3</sub> | 60                 | 80     |
| 7     | 1d        | CuOAc   | $(EtO)_2Si(OAc)_2$     | 82                 | 92     |
| 8     | 2d        | CuOAc   | $(EtO)_2Si(OAc)_2$     | 74                 | 96     |

<sup>&</sup>lt;sup>a</sup> In entries 1 and 2, 1 equiv of (EtO)<sub>3</sub>SiF and 10 mol % of PhBF<sub>3</sub>K were used. In other entries, 1 equiv of additive was used. <sup>b</sup> Isolated yield. <sup>c</sup> Determined by chiral HPLC. <sup>d</sup> CuF·3PPh<sub>3</sub>·2EtOH.

*Table 2.* Optimization of Catalytic Enantioselective Mannich Reaction to Aliphatic Ketoimine

| entry | ligand | additive                                | yield <sup>a</sup><br>(%) | ee <sup>b</sup><br>(%) |
|-------|--------|-----------------------------------------|---------------------------|------------------------|
| 1     | 6      | (EtO) <sub>2</sub> Si(OAc) <sub>2</sub> | 29                        | 87                     |
| 2     | 6      | (EtO) <sub>3</sub> SiF                  | 58                        | 86                     |
| 3     | 7      | (EtO) <sub>3</sub> SiF                  | 90                        | 75                     |
| 4     | 8      | (EtO) <sub>3</sub> SiF                  | 99                        | 81                     |

<sup>&</sup>lt;sup>a</sup> Isolated yield. <sup>b</sup> Determined by chiral HPLC.

J. Am. Chem. Soc. 2007, 129, 500.

#### **Catalytic Enantioselective Strecker Reaction of Ketoimines**



| entry            | Р                   | ligand | time (h) | conversion (%) <sup>a</sup> | ee (%) <sup>b</sup> |
|------------------|---------------------|--------|----------|-----------------------------|---------------------|
| 1 C, d           | CH <sub>2</sub> Ph  | 1      | 24       | 95                          | 35                  |
| 2 <sup>c,d</sup> | H <sub>2</sub> C O  | 1      | 88       | 84                          | 48                  |
| $3^d$            | P(O)Ph <sub>2</sub> | 1      | 16       | 100                         | 72                  |
| 4 <sup>e</sup>   | P(O)Ph <sub>2</sub> | 1      | 14       | 100                         | 82                  |
| 5 <sup>e</sup>   | P(O)Ph <sub>2</sub> | 2      | 8        | 100                         | 85                  |
| 6 <sup>e</sup>   | P(O)Ph <sub>2</sub> | 3      | 6        | 100                         | 96                  |

J. Am. Chem. Soc. 2003, 125, 5634.

# Catalytic Asymmetric Strecker Reaction of Ketoimines: Asymmetric Activation of *tropos* 2,2'-Biphenol with Cinchonine

| Entry | $R^1$         | $R^2$ | Product | X  | <i>t</i> [h] | Yield [%] <sup>[b]</sup> | ee [%] <sup>[c]</sup> |
|-------|---------------|-------|---------|----|--------------|--------------------------|-----------------------|
| 1     | Ph            | Ме    | 7 a     | 5  | 8            | >99                      | > 99 (S)              |
| 2     | $4-FC_6H_4$   | Me    | 7 b     | 5  | 4            | 90                       | 98                    |
| 3     | $4-CIC_6H_4$  | Me    | 7 c     | 5  | 4            | >99                      | >99 (S)               |
| 4     | $4-BrC_6H_4$  | Me    | 7 d     | 5  | 8            | >99                      | >99 (S)               |
| 5     | $4-MeC_6H_4$  | Me    | 7 e     | 10 | 4            | >99                      | >99 (S)               |
| 6     | $4-MeOC_6H_4$ | Me    | 7 f     | 10 | 4            | 99                       | >99 (S)               |
| 7     | $3-CIC_6H_4$  | Me    | 7 g     | 5  | 4            | >99                      | >99                   |
| 8     | $2-FC_6H_4$   | Me    | 7 h     | 10 | 4            | >99                      | 90                    |
| 9     | 2-naphthyl    | Me    | 7 i     | 5  | 22           | 90                       | >99 (S)               |
| 10    | 2-furyl       | Me    | 7 j     | 5  | 22           | 97                       | 99                    |

| Entry | Activator | Diol          | t [h] | Yield [%] <sup>[b]</sup> | ee [%] <sup>[c]</sup> |
|-------|-----------|---------------|-------|--------------------------|-----------------------|
| 1     | 1         | 3 h           | 3.5   | > 99                     | > 99 (S)              |
| 2     | none      | (S)- <b>8</b> | 8     | _                        | _ ` `                 |
| 3     | 1         | (S)- <b>8</b> | 3.5   | > 99                     | > 99 (S)              |
| 4     | 1         | (R)- <b>8</b> | 3.5   | 25                       | 71 ( <i>S</i> )       |
| 5     | 2         | (R)- <b>8</b> | 8     | 95                       | 98 (R)                |
| 6     | 2         | (S)- <b>8</b> | 8     | 49                       | 68 (R)                |
| 7     | 2         | 3 h           | 8     | 87                       | 94 (R)                |

[a] Unless noted otherwise, reactions were carried out with imine (0.1 mmol), TMSCN (0.12 mmol), iPrOH (0.12 mmol), and toluene (0.5 mL) at -20°C. [b] Isolated yield. [c] Determined by HPLC.

Angew. Chem. Int. Ed. 2007, 46, 8468.

#### **Catalytic Enantioselective Allylation of Ketoimines**



| entry          | substrate  | )                     | temp. (°C) | time (h) | yield (%) <sup>a</sup> |
|----------------|------------|-----------------------|------------|----------|------------------------|
| 1              |            | <b>3a</b> : R = H     | 45         | 2        | 94                     |
| 2              |            | <b>3b</b> : R = 3-Me  | 45         | 1.5      | 88                     |
| 3              |            | <b>3c</b> : R = 3-OMe | 45         | 1        | 94                     |
| 4              | R# ∫ 3     | <b>3d</b> : R = 3-F   | 45         | 1        | 92                     |
| 5              | <b>✓</b> 3 | <b>Be</b> : R = 4-0Me | 45         | 5        | 93                     |
| 6              | 3          | <b>sf</b> : R = 4-Cl  | 45         | 1.5      | 96                     |
| 7              | NBn<br>NBr | 3g                    | 45         | 0.5      | 98                     |
| 8 <sup>b</sup> |            | 3h                    | 45         | 4        | 92                     |
| 9              | Ph         | 3i                    | rt         | 1        | 85                     |
| 10             | Ph         | 1<br><b>3</b> j       | rt         | 1        | 96                     |
| 11             | NBn        | 3k                    | rt         | 1        | 96                     |
| 12             |            | 31                    | 45         | 1        | 94                     |
|                |            |                       |            |          |                        |

<sup>&</sup>lt;sup>a</sup> Isolated yield. <sup>b</sup> 5 mol % of CuF·3PPh<sub>3</sub> and 7.5 mol % of La(O<sup>i</sup>Pr)<sub>3</sub> were used.

## Optimization of Catalytic Enantioselective Allylation of Ketoimine



<sup>a</sup> Catalyst was prepared by reducing CuF<sub>2</sub>•2H<sub>2</sub>O with 2 equiv of chiral phosphine to Cu in situ. See Experimental Section for details. <sup>b</sup> ¹BuOH was slowly added over 2 h. <sup>c</sup> Isolated yield. <sup>d</sup> Determined by chiral HPLC. <sup>e</sup> Yield and enantioselectivity were not constant in each run. <sup>f</sup> 10 mol % of chiral Cu catalyst and 30 mol % of LiO¹Pr were used.

J. Am. Chem. Soc. 2006, 128, 7687.

#### Catalytic Enantioselective Allylation of Ketoimine: Origin of Rate Acceleration by LiO<sup>i</sup>Pr



Figure 1. <sup>11</sup>B NMR studies for the rate acceleration mechanism of LiO'Pr. (a) CuF·3PPh<sub>3</sub> + allylboronate 4 (1:3). (b) CuF·3PPh<sub>3</sub> + 4 + LiO'Pr (1:3:1.5). (c) LiO'Pr + 4 (1:1). (d) {LiO'Pr + 4 (1:1)} + {CuF·3PPh<sub>3</sub> + 4 (1:1)} (1:1). The intensity of 13a and 13b (the peak in dashed squares) corresponds to the concentration of the active allylcopper.

J. Am. Chem. Soc. 2006, 128, 7687.

#### **Catalytic Asymmetric Alkylations of Ketoimines**



#### **Catalytic Asymmetric Alkylations of Ketoimines**

J. Am. Chem. Soc. 2008, 130, 5530.

#### Title Paper: Catalytic Asymmetric Addition of Allylic Cyanides to Ketoimines

- nitriles are readily available and stable enough
- unique topology poses minimal steric bias
- nitriles can be viewed as a masked carboxylic acids or amine

#### Title Paper: Initial Screening

| entry     | LA                                                     | ligand                        | temp. |     | yield <sup>b</sup> |     |
|-----------|--------------------------------------------------------|-------------------------------|-------|-----|--------------------|-----|
|           |                                                        |                               | (°C)  | (h) | (%)                | (%) |
| 1         | CuOAc                                                  | $(S,S)$ - $^{i}$ Pr-DuPHOS    | 0     | 16  | $59^c$             | 33  |
| 2         | [Cu(CH <sub>3</sub> CN) <sub>4</sub> ]PF <sub>6</sub>  | (S,S)- <sup>i</sup> Pr-DuPHOS | 0     | 16  | 83 <sup>c</sup>    | 37  |
| 3         | $[Pd(CH_3CN)_4](BF_4)_2$                               | (S,S)- <sup>i</sup> Pr-DuPHOS | 0-rt  | 24  | <5                 |     |
| 4         | $[Ag(CH_3CN)_4]BF_4$                                   | (S,S)- <sup>i</sup> Pr-DuPHOS | 0-rt  | 24  | 0                  |     |
| 5         | [Cu(CH <sub>3</sub> CN) <sub>4</sub> ]PF <sub>6</sub>  | (S,S)- <sup>i</sup> Pr-DuPHOS | -20   | 16  | 67                 | 65  |
| $6^d$     | [Cu(CH <sub>3</sub> CN) <sub>4</sub> ]ClO <sub>4</sub> | (S,S)- <sup>i</sup> Pr-DuPHOS | -20   | 16  | 95                 | 53  |
| $7^d$     | [Cu(CH <sub>3</sub> CN) <sub>4</sub> ]ClO <sub>4</sub> | (S,S)-Ph-BPE                  | -20   | 16  | 95                 | 86  |
| $8^{d,e}$ | [Cu(CH <sub>3</sub> CN) <sub>4</sub> ]ClO <sub>4</sub> | (S,S)-Ph-BPE                  | -20   | 12  | 50                 | 73  |
| $9^{d,f}$ | [Cu(CH <sub>3</sub> CN) <sub>4</sub> ]ClO <sub>4</sub> | (S,S)-Ph-BPE                  | -20   | 12  | <5                 | 84  |

 $^a$  **1a/2a** = 0.2 mmol/2.0 mmol.  $^b$  Determined by  $^1$ H NMR analysis with Bn<sub>2</sub>O as an internal standard.  $^c$  The formation of diene was observed.  $^d$  Solvent was CH<sub>2</sub>Cl<sub>2</sub>/THF = 2/1.  $^e$  Na(OC<sub>6</sub>H<sub>4</sub>-p-OMe) was used instead of Li(OC<sub>6</sub>H<sub>4</sub>-p-OMe).  $^f$  K(OC<sub>6</sub>H<sub>4</sub>-p-OMe) was used of Li(OC<sub>6</sub>H<sub>4</sub>-p-OMe).

- copper acetate promoted  $\alpha$ -addition sluggishly and isomerization occurred rapidly with good geometric control
- cationic Pd(II) and Ag(I) complex failed
- cationic Cu(I) complex enhances catalytic activity ([Cu(CH<sub>3</sub>CN)<sub>4</sub>]ClO<sub>4</sub> is the best Cu source)
- the use of Ph-BPE and DCM/THF solvent improves enantioselectivity
- the use of Na or K aryloxide results in inferior conversion (bimetallic system stability)

### **Title Paper: Scope of the Reaction**

| entry           |           | allylic cyanide | X  | product | yield <sup>b</sup><br>(%) | E/Z <sup>c</sup> | ee<br>(%)       |
|-----------------|-----------|-----------------|----|---------|---------------------------|------------------|-----------------|
| 1 <sup>d</sup>  | N Dpp     | CN 2a           | 10 | 3aa     | 91                        | 7/93             | 90 <sup>i</sup> |
| 2               | n a       | o 2a            | 10 | 3ba     | 74                        | 9/91             | 91              |
| 3 Me            | eO Dpp    | e 2a            | 10 | Зса     | 95                        | 11/89            | 89              |
| 4               | 1c        | 2a              | 5  | 3ca     | 88                        | 12/88            | 83              |
| 5 <sup>e</sup>  | 1c        | 2a              | 10 | 3ca     | 71                        | 10/90            | 94              |
| $6^d$           | CI Dpp    | l 2a            | 10 | 3da     | 84                        | 5/95             | 77 <sup>i</sup> |
| 7               | Dpp<br>1e | e 2a            | 10 | 3ea     | 78                        | 6/94             | 90              |
| 8               | N Dpp     | 2a              | 10 | 3fa     | 83                        | 3/97             | 88              |
| 9               | Et 1g     | g 2a            | 10 | 3ga     | 63                        | 8/92             | 71              |
| 10 <sup>f</sup> | N Dpp     | ı 2a            | 10 | 3ha     | 76                        | <2/98            | 92              |
| 11 <sup>f</sup> | Ph Dpp    | 2a              | 10 | 3ia     | 80                        | 4/96             | 89              |
| 12 <sup>g</sup> | 1c        | 2b              | 10 | 3eb     | 62 <sup>h</sup>           | <2/98            | 90              |

$$R^{1} \xrightarrow{N} R^{2} \xrightarrow{R^{3}} CN \underbrace{\begin{bmatrix} [Cu(CH_{3}CN)_{4}]CIO_{4} \\ (R,R)-Ph-BPE \\ Li(OC_{6}H_{4}-P-OPh) \end{bmatrix}}_{CH_{2}Cl_{2}/THF, -20 °C, 40 h} x mol % R^{1} \xrightarrow{R^{2}} R^{3}$$

 $^a$  1/2 = 0.2 mmol/2.0 mmol, CH<sub>2</sub>Cl<sub>2</sub>/THF = 2/1.  $^b$  Isolated yield of E and Z geometrical isomers.  $^c$  Determined by  $^1$ H NMR analysis of the crude mixture.  $^d$  (S,S)-Ph-BPE was used.  $^e$  3 equiv (0.6 mmol) of **2a** were used.  $^f$  The reaction was conducted at 0.5 M in THF. Li(OC<sub>6</sub>H<sub>4</sub>-p-OMe) was used instead of Li(OC<sub>6</sub>H<sub>4</sub>-p-OPh).  $^g$  Reaction time was 60 h.  $^h$  Isolated yield after two steps (α-addition/isomerization by DBU).  $^i$  Opposite absolute configuration.

#### **Title Paper: Control Experiments**



- 1:1 complex of Ph-BPE/[Cu(CH<sub>3</sub>CN)<sub>4</sub>]ClO<sub>4</sub> is formed
- upon the addition of LiOAr, 1:1 complex Ph-BPE/CuOAr and LiClO<sub>4</sub> are formed

#### **Title Paper: Control Experiments**

#### (a) Li-free catalyst

(b) Li-free catalyst + LiClO<sub>4</sub>

(c) Without [Cu(CH<sub>3</sub>CN)<sub>4</sub>]ClO<sub>4</sub>

- Li-free conditions provided trace amounts of product
- in situ generated LiClO<sub>4</sub> is essential to drive the reaction
- Lack of [Cu(CH<sub>3</sub>CN)<sub>4</sub>]ClO<sub>4</sub> provided small amount of product: soft Cu was required to promote the reaction

#### **Title Paper: Mechanistic Proposal**

- 2 Ph-BPE/CuOAr could work together to deprotonate allyl nitrile
- Li<sup>+</sup> could be beneficial for the association of two Ph-BPE/CuOAr complexes via a hard-hard Li-O interaction
- more reactive N-Dpp aldimine in the absence of LiClO<sub>4</sub> provided only 10% yield of the product, so LiClO<sub>4</sub> was important in deprotonation step

#### **Conclusions**

- Direct catalytic asymmetric addition of allylic nitriles to ketoimines was developed
- In this reaction, CuOAr/Ph-BPE work cooperatively with LiClO<sub>4</sub>
- This methodology enables the formation of  $\alpha,\beta$ -unsaturated nitriles with a stereogenic tetrasubstituted carbon atom
- The reaction conditions tolerate both aryl-alkyl and alkyl-alkyl ketoimines with no loss in E/Z and enantioselectivity
- More detailed mechanistic studies are ongoing